题目内容
如图,PD切⊙O于A,
=2
,∠CAP=120°,则∠DAB=______度.
AB |
BC |
连接OC,
∵∠CAP=120°,
∴∠CAD=60°,
∴∠COA=120°,
弧AC=120°
又∵AB弧=2BC,
∴AB弧=120×
=80°
∴∠BOA=80°,
∵OA=OB,
∴∠OAB=∠OBA=
=50°,
∵PD是⊙O切线,
∴∠OAD=90°,
∴∠DAB=90°-50°=40°,
故答案为:40.
∵∠CAP=120°,
∴∠CAD=60°,
∴∠COA=120°,
弧AC=120°
又∵AB弧=2BC,
∴AB弧=120×
2 |
3 |
∴∠BOA=80°,
∵OA=OB,
∴∠OAB=∠OBA=
180°-80° |
2 |
∵PD是⊙O切线,
∴∠OAD=90°,
∴∠DAB=90°-50°=40°,
故答案为:40.
练习册系列答案
相关题目