题目内容
【题目】如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个命题:
①当x>0时,y>0;
②若a=﹣1,则b=3;
③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;
④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为6.
其中真命题的序号是____________.
【答案】②③.
【解析】
(1)根据二次函数所过象限,判断出y的符号;
(2)根据A、B关于对称轴对称,求出b的值;
(3)根据,由x1<1<x2,从而得到Q点距离对称轴较远,由图象性质判断出y1>y2;
(4)作D关于y轴的对称点,E关于x轴的对称点,连接,DE和的和即为四边形EDFG周长的最小值,求出D、E、、的坐标即可解答.
(1)当x>0时,函数图象过一、四象限,当0<x<b时,y>0;当x>b时,y<0,故本选项错误;
(2)二次函数对称轴为x=-=1,点A、B关于x=1对称,当a=-1时,有=1,解得b=3,故本选项正确;
(3)∴x1+x2>2,
∴,
又∵x1<1<x2,
∴Q点距离对称轴较远,
∵函数图象开口向下,
∴y1>y2,故本选项正确;
(4)如图,作D关于x轴的对称点,E关于x轴的对称点,连接,的和即为四边形EDFG周长的最小值,
当m=2时,二次函数为y=﹣x2+2x+3,顶点纵坐标为y=-1+2+3=4,D为(1,4),则为(-1,4),C点坐标为(0,3),则E为(2,3),为(2,-3)则DE=,=,
∴四边形EDFG周长的最小值为,
∴四边形EDFG周长的最小值为,故本选项错误,
故答案为:②③.
【题目】为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调査结果绘制成如下不完整的统计表和统计图.
学生选修课程统计表
课程 | 人数 | 所占百分比 |
声乐 | 14 | |
舞蹈 | 8 | |
书法 | 16 | |
摄影 | ||
合计 |
根据以上信息,解答下列问题:
(1) , .
(2)求出的值并补全条形统计图.
(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.
(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.