题目内容
【题目】如图,在平面直角坐标系中,已知正方形ABCO,A(0,3),点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为________.
【答案】
【解析】
如图,作EH⊥x轴于H,连接CE.利用全等三角形的性质证明∠ECH=45°,推出点E在直线y=x-3上运动,作OE′⊥CE,求出OE′的长即可解决问题.
如图,作EH⊥x轴于H,连接CE.
∵∠AOD=∠ADE=∠EHD=90°,
∴∠ADO+∠EDH=90°,∠EDH+∠DEH=90°,
∴∠ADO=∠DEH,
∵AD=DE,
∴△ADO≌△DEH(AAS),
∴OA=DH=OC,OD=EH,
∴OD=CH=EH,
∴∠ECH=45°,
∴点E在直线y=x-3上运动,作OE′⊥CE,则△OCE′是等腰直角三角形,
∵OC=3,
∴OE′=,
∴OE的最小值为.
故答案为:.
练习册系列答案
相关题目
【题目】经过实验获得两个变量 x(x 0), y( y 0) 的一组对应值如下表。
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
y | 7 | 3.5 | 2.33 | 1.75 | 1.4 | 1.17 | 1 |
(1)在网格中建立平面直角坐标系,画出相应的函数图象,求出这个函数表达式;
(2)结合函数图象解决问题:(结果保留一位小数)
①的值约为多少?
②点A坐标为(6,0),点B在函数图象上,OA=OB,则点B的横坐标约是多少?