题目内容

【题目】如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N,则tan∠ANE=

【答案】
【解析】解:设正方形的边长为2a,DH=x, 则CH=2a﹣x,
由翻折的性质,DE= AD= ×2a=a,
EH=CH=2a﹣x,
在Rt△DEH中,DE2+DH2=EH2
即a2+x2=(2a﹣x)2
解得x= a,
∵∠MEH=∠C=90°,
∴∠AEN+∠DEH=90°,
∵∠ANE+∠AEN=90°,
∴∠ANE=∠DEH,
∴tan∠ANE=tan∠DEH= = =
故答案为:
设正方形的边长为2a,DH=x,表示出CH,再根据翻折变换的性质表示出DE、EH,然后利用勾股定理列出方程求出x,再根据同角的余角相等求出∠ANE=∠DEH,然后根据锐角的正切值等于对边比邻边列式计算即可得解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网