题目内容
【题目】已知二次函数y=x2+bx+c,其图象抛物线交x轴于点A(1,0),B(3,0),交y轴于点C,直线l过点C,且交抛物线于另一点E(点E不与点A、B重合).
(1)求此二次函数关系式;
(2)若直线l1经过抛物线顶点D,交x轴于点F,且l1∥l,则以点C、D、E、F为顶点的四边形能否为平行四边形?若能,求出点E的坐标;若不能,请说明理由.
(3)若过点A作AG⊥x轴,交直线l于点G,连接OG、BE,试证明OG∥BE.
【答案】
(1)
解:二次函数y=x2+bx+c,其图象抛物线交x轴于点A(1,0),B(3,0),
∴ ,
解得: ,
∴此二次函数关系式为:y=x2﹣4x+3;
(2)
解:假设以点C、D、E、F为顶点的四边形能成为平行四边形.
①若CD为平行四边形的对角线,如答图2﹣1.
过点D作DM⊥AB于点M,过点E作EN⊥OC于点N,
∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴点D(2,﹣1),点C(0,3),
∴DM=1,
∵l1∥l,
∴当CE=DF时,四边形CEDF是平行四边形,
∴∠ECF+∠CFD=180°,
∵∠OCF+∠OFC=90°,
∴∠ECN+∠DFM=90°,
∵∠DFM+∠FDM=90°,
∴∠ECN=∠FDM,
在△ECN和△FDM中,
,
∴△ECN≌△FDM(AAS),
∴CN=DM=1,
∴ON=OC﹣CN=3﹣1=2,
当y=2时,x2﹣4x+3=2,
解得:x=2± ;
当x=2± 时,可得E(2+ ,2),F(﹣ ,0)或E(2﹣ ,2,),F( ,0),
此时四边形CFDE为平行四边形.
②若CD为平行四边形的边,如答图2﹣2,则EF∥CD,且EF=CD.
过点D作DM⊥y轴于点M,则DM=2,OM=1,CM=OM+OC=4;
过点E作EN⊥x轴于点N.
易证△CDM≌△EFN,∴EN=CM=4.
∴x2﹣4x+3=4,
解得:x=2± .
综上所述,以点C、D、E、F为顶点的四边形能成为平行四边形;点E的坐标为(2+ ,2)、(2﹣ ,2)、(2+ ,4)、(2﹣ ,4).
(3)
解:如图②,过点E作EH⊥x轴于点H,
设直线CE的解析式为:y=kx+3,
∵A(1,0),AG⊥x轴,
∴点G(1,k+3),
即OA=1,AG=k+3,
∵E是直线与抛物线的交点,
∴ ,
解得: ,
∴点E(k+4,(k+1)(k+3)),
∴BH=OH﹣OB=k+1,EH=(k+1)(k+3),
∴ ,
∵∠OAG=∠BHE=90°,
∴△OAG∽△BHE,
∴∠AOG=∠HBE,
∴OG∥BE.
【解析】(1)由二次函数y=x2+bx+c,其图象抛物线交x轴于点A(1,0),B(3,0),直接利用待定系数法求解,即可求得此二次函数关系式;(2)以点C、D、E、F为顶点的四边形构成平行四边形,有两种情形,需要分类讨论,避免漏解:①若CD为平行四边形的对角线,如答图2﹣1所示;②若CD为平行四边形的边,如答图2﹣2所示;(3)首先过点E作EH⊥x轴于点H,设直线CE的解析式为:y=kx+3,然后分别求得点G与E的坐标,即可证得△OAG∽△BHE,则可得∠AOG=∠HBE,继而可证得OG∥BE.
【考点精析】关于本题考查的二次函数的图象和二次函数的性质,需要了解二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.