题目内容
【题目】如图1,已知a∥b,点A、B在直线a上,点C、D在直线b上,且AD⊥BC于E.
(1)求证:∠ABC+∠ADC=90°;
(2)如图2,BF平分∠ABC交AD于点F,DG平分∠ADC交BC于点G,求∠AFB+∠CGD的度数;
(3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD=∠BCN,则∠CIP、∠IPN、∠CNP之间的数量关系是______.
【答案】(1)见解析;(2)225°;(3)3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.
【解析】
(1)如图1中,过E作EF∥a,利用平行线的性质即可解决问题;
(2)如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,可得x+y=45°,证明∠AFB=180°-(2y+x),∠CGD=180°-(2x+y),推出∠AFB+∠CGD=360°-(3x+3y)即可解决问题;
(3)分两种情形:①当点N在∠DCB内部时,②当点N′在直线CD的下方时,分别画出图形求解即可.
(1)证明:如图1中,过E作EF∥a.
∵a∥b,
∴a∥b∥EF,
∵AD⊥BC,
∴∠BED=90°,
∵EF∥a,
∴∠ABE=∠BEF,
∵EF∥b,
∴∠ADC=∠DEF,
∴∠ABC+∠ADC=∠BED=90°.
(2)解:如图2中,作FM∥a,GN∥b,
设∠ABF=∠EBF=x,∠ADG=∠CDG=y,
由(1)知:2x+2y=90°,x+y=45°,
∵FM∥a∥b,
∴∠BFD=2y+x,
∴∠AFB=180°-(2y+x),
同理:∠CGD=180°-(2x+y),
∴∠AFB+∠CGD=360°-(3x+3y),
=360°-3×45°=225°.
(3)解:如图,设PN交CD于E.
当点N在∠DCB内部时,∵∠CIP=∠PBC+∠IPB,
∴∠CIP+∠IPN=∠PBC+∠BPN+2∠IPE,
∵PN平分∠EPB,
∴∠EPB=∠EPI,
∵AB∥CD,
∴∠NPE=∠CEN,∠ABC=∠BCE,
∵∠NCE=∠BCN,
∴∠CIP+∠IPN=3∠PEC+3∠NCE=3(∠NCE+∠NEC)=3∠CNP.
当点N′在直线CD的下方时,同理可知:∠CIP+∠CNP=3∠IPN,
综上所述:3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.
【题目】中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
频数频率分布表
成绩x(分) | 频数(人) | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
根据所给信息,解答下列问题:
(1)m= ,n= ;
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在 分数段;
(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?