题目内容
【题目】如图,在△ABC中,∠ABC=90°,边AC的垂直平分线交BC于点D,交AC于点E,连接BE.
(1)若∠C=30°,求证:BE是△DEC外接圆的切线;
(2)若BE= ,BD=1,求△DEC外接圆的直径.
【答案】
(1)证明:∵DE垂直平分AC,
∴∠DEC=90°,AE=CE,
∴DC为△DEC外接圆的直径,
取DC的中点O,连结OE,如图,
∵∠ABC=90°,
∴BE为Rt△ABC斜边上的中线,
∴EB=EC,
∵∠C=30°,
∴∠EBC=30°,∠EOD=2∠C=60°,
∴∠BEO=90°,
∴OE⊥BE,
而OE为⊙O的半径,
∴BE是△DEC外接圆的切线
(2)解:∵BE为Rt△ABC斜边上的中线,
∴AE=EC=BE= ,
∴AC=2 ,
∵∠ECD=∠BCA,
∴Rt△CED∽Rt△CBA,
∴ ,
而CB=CD+BD=CD+1,
∴ = ,
解得CD=2或CD=﹣3(舍去),
∴△DEC外接圆的直径为2
【解析】(1)根据线段垂直平分线的性质由DE垂直平分AC得∠DEC=90°,AE=CE,利用圆周角定理得到DC为△DEC外接圆的直径;取DC的中点O,连结OE,根据直角三角形斜边上的中线性质得EB=EC,得∠C=∠EBC=30°,则∠EOD=2∠C=60°,可计算出∠BEO=90°,然后根据切线的判定定理即可得到结论;(2)由BE为Rt△ABC斜边上的中线得到AE=EC=BE= ,易证得Rt△CED∽Rt△CBA,则 ,然后利用相似比可计算出△DEC外接圆的直径CD.
【考点精析】本题主要考查了切线的判定定理的相关知识点,需要掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线才能正确解答此题.
【题目】为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:
每月用气量 | 单价(元/m3) |
不超出75m3的部分 | 2.5 |
超出75m3不超出125m3的部分 | a |
超出125m3的部分 | a+0.25 |
(1)若甲用户3月份的用气量为60m3 , 则应缴费元;
(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;
(3)在(2)的条件下,若乙用户2、3月份共用气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?