题目内容
【题目】如图,已知△ABC,AB=,,∠B=45°,点D在边BC上,联结AD, 以点A为圆心,AD为半径画圆,与边AC交于点E,点F在圆A上,且AF⊥AD.
(1)设BD为x,点D、F之间的距离为y,求y关于x的函数解析式,并写出定义域;
(2)如果E是的中点,求的值;
(3)联结CF,如果四边形ADCF是梯形,求BD的长 .
【答案】(1) (0≤x≤3); (2) ; (3) BD的长是1或.
【解析】
(1)过点A作AH⊥BC,垂足为点H.构造直角三角形,利用解直角三角形和勾股定理求得AD的长度.联结DF,点D、F之间的距离y即为DF的长度,在Rt△ADF中,利用锐角三角形函数的定义求得DF的长度,易得函数关系式.
(2)由勾股定理求得:AC=.设DF与AE相交于点Q,通过解Rt△DCQ和Rt△AHC推知.故设DQ=k,CQ=2k,AQ=DQ=k,所以再次利用勾股定理推知DC的长度,结合图形求得线段BD的长度,易得答案.
(3)如果四边形ADCF是梯形,则需要分类讨论:①当AF∥DC、②当AD∥FC.根据相似三角形的判定与性质,结合图形解答.
(1)过点作AH⊥BC,垂足为点H.
∵∠B=45°,AB=,∴.
∵BD为x,∴.
在Rt△中,,∴.
联结DF,点D、F之间的距离y即为DF的长度.
∵点F在圆A上,且AF⊥AD,∴,.
在Rt△中,,∴.
∴. ;
(2)∵E
∵BC=3,∴.∴.
设DF与AE相交于点Q,在Rt△中,,.
在Rt△中,,.
∵,∴.
设,,
∵,,∴.
∵,∴.
(3)如果四边形ADCF是梯形
则①当AF∥DC时,.
∵,∴,即点D与点H重合. ∴.
②当AD∥FC时,.
∵,∴.
∵,∴.
∴∽.∴.
∵,.
∴.即,
整理得 ,解得 (负数舍去).
综上所述,如果四边形ADCF是梯形,BD的长是1或.