题目内容

【题目】一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B(参考数据:≈1.732,结果精确到0.1)

【答案】它向东航行约7.3海里到达灯塔P南偏西45°方向上的B处.

【解析】

利用题意得到ACPC,∠APC=60°,∠BPC=45°,AP=20,如图,在RtAPC中,利用余弦的定义计算出PC=10,利用勾股定理求出AC,再判断△PBC为等腰直角三角形得到BC=PC=10,然后计算AC-BC即可.

如图,AC⊥PC∠APC=60°∠BPC=45°AP=20

Rt△APC中,∵cos∠APC=

∴PC=20cos60°=10

∴AC==10

△PBC中,∵∠BPC=45°

∴△PBC为等腰直角三角形,

∴BC=PC=10

∴AB=ACBC=1010≈7.3(海里)

答:它向东航行约7.3海里到达灯塔P南偏西45°方向上的B处.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网