题目内容
【题目】如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s的速度向A点运动.设运动时间为x(s).
(1)当x为何值时,PQ∥BC;
(2)当△APQ与△CQB相似时,AP的长为;
(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.
【答案】
(1)解:由题意得,PQ平行于BC,则AP:AB=AQ:AC,AP=4x,AQ=30﹣3x
∴ =
∴x=
(2)解:假设两三角形可以相似, 情况1:当△APQ∽△CQB时,CQ:AP=BC:AQ,
即有 = 解得x= ,
经检验,x= 是原分式方程的解.
此时AP= cm,
情况2:当△APQ∽△CBQ时,CQ:AQ=BC:AP,
即有 = 解得x=5,
经检验,x=5是原分式方程的解.
此时AP=20cm.
综上所述,AP= cm或AP=20cm;
故答案为: cm或20cm
(3)解:当S△BCQ:S△ABC=1:3时, = ,
∴ ,
∴CQ:AC=1:3,AC=30,∴CQ=10=3x,x= ,∴AP=4x= ,
∴AP:AB= :20=2:3.
【解析】(1)当PQ∥BC时,根据平行线分线段成比例定理,可得出关于AP,PQ,AB,AC的比例关系式,我们可根据P,Q的速度,用时间x表示出AP,AQ,然后根据得出的关系式求出x的值.(2)本题要分两种情况进行讨论.已知了∠A和∠C对应相等,那么就要分成AP和CQ对应成比例以及AP和BC对应成比例两种情况来求x的值;(3)根据等高面积比等于底的比,即可得到结论.
【考点精析】利用相似三角形的判定与性质对题目进行判断即可得到答案,需要熟知相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.