题目内容
【题目】如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为______.
【答案】8
【解析】
如图,过点A作AH⊥BC于H,过点E作EM⊥AB于M,过点C作CN⊥AB于N,根据等腰三角形的性质以及三角形的面积可求出CN=4,继而根据勾股定理求出AN=3,从而求得BN的长,然后证明△EDM≌△DCN,根据全等三角形的性质可得EM=DN,设BD=x,则DN=8-x,继而根据三角形的面积公式可得S△BDE=,根据二次函数的性质即可求得答案.
如图,过点A作AH⊥BC于H,过点E作EM⊥AB于M,过点C作CN⊥AB于N,
∵AB=AC=5,BC=4,AH⊥BC,
∴BH=BC=2,
∴AH==,
∵S△ABC=,
即,
∴CN=4,
在Rt△CAN中,∠ANC=90°,∴AN==3,
∴BN=BA+AN=8,
∵四边形CDEF是正方形,
∴∠EDM+∠CDN=∠EDC=90°,ED=CD,
∵∠CDN+∠NCD=90°,
∴∠EDM=∠DCN,
又∵∠EMD=∠DNC=90°,
∴△EDM≌△DCN,
∴EM=DN,
设BD=x,则DN=8-x,
∴S△BDE===,
∵,
∴S△BDE的最大值为8,
故答案为:8.
【题目】已知函数,小李同学对该函数的图象与性质进行了探究,下面是小李同学探究的过程,补充完整:
(1)直接写出自变量x的取值范围:__________;
(2)下表是y与x的几组对应值:
x | … | -4 | -1 | 0 | 1 | 3 | 4 | 5 | n | … | ||||
y | … | m | 0 | -1 | -4 | 8 | 5 | 4 | 3 | … |
则m= ,n= ;
(3)如图所示,在平面直角坐标系xoy中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象;
(4)观察函数图象可知:该函数图象的对称中心的坐标是______;
(5)当时,关于x的方程有实数解,直接写出k的取值范围_______.