题目内容
【题目】在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,联结EF.
(1)如图,当点D在线段CB上时,
①求证:△AEF≌△ADC;
②联结BE,设线段CD=x,线段BE=y,求y关于x的函数解析式及定义域;
(2)当∠DAB=15°时,求△ADE的面积.
【答案】(1)①证明见解析;②函数的解析式是y=,定义域是0<x≤5;(2)△ADE的面积为或50+75.
【解析】
(1)①在直角三角形中,由30度所对的直角边等于斜边的一半求出的长,再由为中点,得到,确定出三角形为等边三角形,利用等式的性质得到一对角相等,再由,利用即可得证;
②由全等三角形对应角相等得到为直角,,在三角形中,利用勾股定理即可列出关于的函数解析式及定义域;
(2)分两种情况考虑:①当点D在线段上时;②当点D在线段的延长线上时,分别求出三角形面积即可.
(1)①在Rt△ABC中,
∵∠B=30°,AB=10,
∴∠CAB=60°,AC=AB=5,
∵点F是AB的中点,
∴AF=AB=5,
∴AC=AF,
∵△ADE是等边三角形,
∴AD=AE,∠EAD=60°,
∵∠CAB=∠EAD,即∠CAD+∠DAB=∠FAE+∠DAB,
∴∠CAD=∠FAE,
在△AEF和△ADC中,
,
∴△AEF≌△ADC(SAS);
②∵△AEF≌△ADC,
∴∠AFE=∠C=90°,EF=CD=x,
又∵点F是AB的中点,
∴AE=BE=y,
在Rt△AEF中,勾股定理可得:y2=25+x2,
∴函数的解析式是,定义域是;
(2)①当点D在线段CB上时,
由∠DAB=15°,可得∠CAD=45°,△ADC是等腰直角三角形,
∴AD2=50,
△ADE的面积为;
②当点D在线段CB的延长线上时,
由∠DAB=15°,可得∠ADB=15°,BD=BA=10,
∴在Rt△ACD中,勾股定理可得,
△ADE的面积为,
综上所述,△ADE的面积为或.