题目内容
【题目】如图,以等边△ABC的边AC为腰作等腰△CAD,使AC=AD,连接BD,若∠DBC=41°,∠CAD=________°.
【答案】82°
【解析】
根据等边三角形的性质可得:AB=AC,∠ABC=∠BAC=60°,从而求出∠ABD的度数,然后根据已知条件可得:AB= AD,根据等边对等角即可得:∠ADB=∠ABD,利用三角形的内角和即可求出∠BAD,从而求出∠CAD的度数.
解:∵△ABC是等边三角形
∴AB=AC,∠ABC=∠BAC=60°
∵AC=AD,∠DBC=41°
∴AB= AD,∠ABD=∠ABC-∠DBC=19°
∴∠ADB=∠ABD=19°
∴∠BAD=180°-∠ADB-∠ABD=142°
∴∠CAD=∠BAD-∠BAC=82°
故答案为:82°.
练习册系列答案
相关题目