题目内容

【题目】如图,已知点A是双曲线y= 在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y= (k<0)上运动,则k的值是

【答案】﹣6
【解析】解:∵双曲线y= 关于原点对称, ∴点A与点B关于原点对称.
∴OA=OB.
连接OC,如图所示.
∵△ABC是等边三角形,OA=OB,
∴OC⊥AB.∠BAC=60°.
∴tan∠OAC= =
∴OC= OA.
过点A作AE⊥y轴,垂足为E,
过点C作CF⊥y轴,垂足为F,
∵AE⊥OE,CF⊥OF,OC⊥OA,
∴∠AEO=∠OFC,∠AOE=90°﹣∠FOC=∠OCF.
∴△AEO∽△OFC.
= =
∵OC= OA,
∴OF= AE,FC= EO.
设点A坐标为(a,b),
∵点A在第一象限,
∴AE=a,OE=b.
∴OF= AE= a,FC= EO= b.
∵点A在双曲线y= 上,
∴ab=2.
∴FCOF= b a=3ab=6
设点C坐标为(x,y),
∵点C在第四象限,
∴FC=x,OF=﹣y.
∴FCOF=x(﹣y)=﹣xy
=6.
∴xy=﹣6.
∵点C在双曲线y= 上,
∴k=xy=﹣6.
故答案为:﹣6.

连接OC,易证AO⊥OC,OC= OA.由∠AOC=90°想到构造K型相似,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,可证△AEO∽△OFC.从而得到OF= AE,FC= EO..设点A坐标为(a,b)则ab=2,可得FCOF=6.设点C坐标为(x,y),从而有FCOF=﹣xy=﹣6,即k=xy=﹣6.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网