题目内容
【题目】如图,已知点O是△ABC的两条角平分线的交点,
(1)若∠A=30°,则∠BOC的大小是 ;
(2)若∠A=60°,则∠BOC的大小是 ;
(3)若∠A=n°,则∠BOC的大小是多少?试用学过的知识说明理由.
【答案】 (1) 105°; (2) 120°;(3) n°+90°.
【解析】试题分析:∠BOC+∠OBC+∠OCB=180°,根据角平分线的定义得到∠ABC=2∠OBC,∠ACB=2∠OCB,等量代换得到∠BOC+ ∠ABC+∠ACB=180°,根据三角形的内角和定理即可得到结论.
试题解析:
(1)如图,在△ABC中,∠A+∠ABC+∠ACB=180°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∵BO,CO分别是∠ABC和∠ACB的平分线,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴∠BOC+ ∠ABC+∠ACB=180°,
又∵在△ABC中,∠A+∠ABC+∠ACB=180°,
∴∠BOC=∠A+90°=105°;
(2)如图,在△ABC中,∠A+∠ABC+∠ACB=180°,
在△BOC中,∠BOC+∠OBC+∠OCB=180°,
∵BO,CO分别是∠ABC和∠ACB的平分线,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴∠BOC+∠ABC+∠ACB=180°,
又∵在△ABC中,∠A+∠ABC+∠ACB=180°,
∴∠BOC=∠A+90°=120°;
(3)∠BOC=n°+90°,
∵OB、OC是两条角平分线,
∴∠OBC=∠ABC, ∠OCB=∠ACB ,
在△OBC中,∠BOC=180°-(∠OBC+∠OCB)
=180°-(∠ABC+∠ACB)
=180°-(∠ABC+∠ACB)
=180°-(180°-∠A)
=∠A+90°
=n°+90°.