题目内容

如图所示,在⊙O中,
AD
=
AC
,弦AB与弦AC交于点A,弦CD与AB交于点F,连接BC.
(1)求证:AC2=AB•AF;
(2)若⊙O的半径长为2cm,∠B=60°,求图中阴影部分面积.
(1)证明:∵
AD
=
AC

∴∠ACD=∠ABC,又∠BAC=∠CAF,
∴△ACF△ABC,
AC
AB
=
AF
AC
,即AC2=AB•AF;

(2)连接OA,OC,过O作OE⊥AC,垂足为点E,
如图所示:
∵∠ABC=60°,∴∠AOC=120°,
又∵OA=OC,∴∠AOE=∠COE=
1
2
×120°=60°,
在Rt△AOE中,OA=2cm,
∴OE=OAcos60°=1cm,
∴AE=
OA2-OE2
=
3
cm,
∴AC=2AE=2
3
cm,
则S阴影=S扇形OAC-S△AOC=
120π•22
360
-
1
2
×2
3
×1=(
3
-
3
)cm2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网