题目内容

【题目】用小立方块搭一几何体,使得它的从正面看和从上面看形状图如图所示,这样的几何体最少要______个立方块,最多要_______个立方块.

【答案】

【解析】

由几何体的主视图和俯视图可知,该几何体的主视图的第一列3个正方形中每个正方形所在位置最多均可有2个小立方块,最少一个正方形所在位置有2个小立方块,其余2个所在位置各有1个小立方块;主视图的第二列2个小正方形中,每个小正方形所在位置最多均可有3个小立方体,最少一个正方形所在位置有3个小立方块,另1个所在位置有1个小立方块;主视图的第三列1个小正方形所在位置只能有1个小立方块.

观察图象可知:这样的几何体最少需要(2+1+1)+(3+1)+1=9(个)小立方块;

最多需要3×2+2×3×1=13(个)小立方块.

故答案为:9,13.

练习册系列答案
相关题目

【题目】综合与探究

阅读材料:

数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.例如,两个有理数在数轴上对应的点之间的距离可以用这两个数的差的绝对值表示;

在数轴上,有理数31对应的两点之间的距离为|3﹣1|=2;

在数轴上,有理数5与﹣2对应的两点之间的距离为|5﹣(﹣2)|=7;

在数轴上,有理数﹣23对应的两点之间的距离为|﹣2﹣3|=5;

在数轴上,有理数﹣8与﹣5对应的两点之间的距离为|﹣8﹣(﹣5)|=3;……

如图1,在数轴上有理数a对应的点为点A,有理数b对应的点为点B,A,B两点之间的距离表示为|a﹣b||b﹣a|,记为|AB|=|a﹣b|=|b﹣a|.

解决问题:

(1)数轴上有理数﹣10与﹣5对应的两点之间的距离等于   ;数轴上有理数x与﹣5对应的两点之间的距离用含x的式子表示为   ;若数轴上有理数x与﹣1对应的两点A,B之间的距离|AB|=2,则x等于   

联系拓广:

(2)如图2,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为﹣2,动点P表示的数为x.

请从A,B两题中任选一题作答,我选择   题.

A.①若点P在点M,N两点之间,则|PM|+|PN|=   

②若|PM|=2|PN|,即点P到点M的距离等于点P到点N的距离的2倍,则x等于   

B.①若点P在点M,N之间,则|x+2|+|x﹣4|=   

|x+2|+|x﹣4|═10,则x=   

②根据阅读材料及上述各题的解答方法,|x+2|+|x|+|x﹣2|+|x﹣4|的最小值等于   

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网