题目内容
【题目】如图,直线AB、CD相交于点O,∠AOC=30°,半径为2cm的P的圆心在射线OA上,且与点O的距离为6cm,如果P以1cm/s的速度沿直线AB由A向B的方向移动,那么P与直线CD相切时☉P运动的时间是( )
A.3秒或10秒B.3秒或8秒C.2秒或8秒D.2秒或10秒
【答案】D
【解析】
作PH⊥CD于H,根据直角三角形的性质得到OP=2PH,分点P在OA上、点P在AO的延长线上两种情况可,根据切线的性质解答.
解:作PH⊥CD于H,
在Rt△OPH中,∠AOC=30°,
∴OP=2PH,
当点P在OA上,⊙P与直线CD相切时,OP=2PH=4cm,
∴点P运动的距离为6﹣4=2,
∴⊙P运动的时间是2秒,
当点P在AO的延长线上,⊙P与直线CD相切时,OP=2PH=4cm,
∴点P运动的距离为6+4=10,
∴⊙P运动的时间是10秒,
故选:D.
练习册系列答案
相关题目