题目内容
【题目】在Rt△ABC中,,AC=BC,D为BC的中点,过C作CE⊥AD于点E,延长CE交AB于点F,,连接FD;若AC=4,则CF+FD的值是( )
A.B.5C.D.
【答案】A
【解析】
作BG⊥CB,交CF的延长线于点G,根据题意利用ASA定理证明△ACD≌△CBG,从而得到CD=BG,CG=AD,然后利用中点的性质和SAS定理证明△BFG≌△BFD,从而求得CF+FD=CF+FG=CG=AD,利用勾股定理求AD的长,从而使问题得解.
证明:作BG⊥CB,交CF的延长线于点G,如图所示:
∵∠CBG=90°,CF⊥AD,
∴∠CAD+∠ADC=∠BCG+∠ADC=90°,
∴∠CAD=∠BCG,
在△ACD和△CBG中, ,
∴△ACD≌△CBG(ASA),
∴CD=BG,CG=AD
∵D为BC的中点
∴CD=BD,
∴BG=BD,
∵∠ABC=45°,
∴∠FBD=∠GBF=∠CBG,
在△BFG和△BFD中,,
∴△BFG≌△BFD(SAS),
∴FG=FD,
∴CF+FD=CF+FG=CG=AD
又∵,AC=BC,AC=4,
∴
∴CF+FD=AD=
故选:A
练习册系列答案
相关题目
【题目】已知抛物线
抛物线 | 顶点坐标 | 与x轴交点坐标 | 与y轴交点坐标 | |
抛物线 | A(____) | B(____) | (1,0) | (0,-3) |
(1)补全表中A,B两点的坐标,并在所给的平面直角坐标系中,画出抛物线
(2)结合图象回答
①当x的取值范围为________时,y随x的增大而增大;
②当x________时,;
③当时,y的取值范围________.