题目内容
【题目】问题情填,
在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动,如图1,将矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD、并且量得AB=2cm,AC=4cm.
操作发现:
(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到加图2所示的△AC′D,过点C作AC′的平行线,与DC′的延长线交于点E,则四边形ACEC'的形状是_________;
(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B,A,D三点在同一条直线上,得到如图3所示的△AC′D,连接CC′,取CC'的中点F,连精AF并延长到点G,使FG=AF,连接CG,C′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论.
实践探究:
(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A′点,A′C与BC′相交于点H.如图4所示,连接CC',试求CH的长度.
【答案】(1)菱形;(2)见解析;(3)
【解析】
(1)在图一中,利用矩形的性质和平行线的性质可得出∠ACD=∠BAC,在图2中,由旋转知AC=AC',∠AC'D=∠ACD,可得∠CAC'=∠AC'D,可得AC∥C'E,证得四边形ACEC'是平行四边形,又AC=AC',证得ACEC'是菱形
(2)在图1和图3中,根据矩形的性质和旋转的性质证明∠BAC+∠DAC'=90°,根据中点可得CF=C'F,AF=FG,可得到四边形ACGC'是平行四边形,又因为AG⊥CC',证得ACGC'是菱形,由∠CAC'=90°,故证得菱形ACGC'是正方形;
(3)在Rt△ABC中,AB=2,AC=4,可求得sin∠ACB=,由(2)结合平移知,∠CHC’=90°,再利用解直角三角形求出BH=BC·sin30°=,进而求得C’H=BC’-BC=4-,CH=AC-AH=4-1=3,最后在Rt△CHC’中,利用锐角三角函数的定义求得tan∠C’CH==.
解:(1)在如图1中,
∵AC是矩形ABCD的对角线,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠BAC,
在如图2中,由旋转知,AC'=AC,∠AC'D=∠ACD,
∴∠BAC=∠AC'D,
∵∠CAC'=∠BAC,
∴∠CAC'=∠AC'D,
∴AC∥C'E,
∵AC'∥CE,
∴四边形ACEC'是平行四边形,
∵AC=AC',
∴ACEC'是菱形,
故答案为:菱形;
(2)在图1中,∵四边形ABCD是矩形,
∴AB∥CD,
∴∠CAD=∠ACB,∠B=90°,
∴∠BAC+∠ACB=90°
在图3中,由旋转知,∠DAC'=∠DAC,
∴∠ACB=∠DAC',
∴∠BAC+∠DAC'=90°,
∵点D,A,B在同一条直线上,
∴∠CAC'=90°,
由旋转知,AC=AC',
∵点F是CC'的中点,
∴AG⊥CC',CF=C'F,
∵AF=FG,
∴四边形ACGC'是平行四边形,
∵AG⊥CC',
∴ACGC'是菱形,
∵∠CAC'=90°,
∴菱形ACGC'是正方形;
(3)在Rt△ABC中,AB=2,AC=4
∴BC’=AC=4,BD=BC=2,sin∠ACB=
∴∠ACB=30°
由(2)结合平移知,∠CHC’=90°
在Rt△BCH中,∠ACB=30°
∴BH=BC·sin30°=
∴C’H=BC’-BC=4-
在Rt△ABH中,AH=AB=1
∴CH=AC-AH=4-1=3
在Rt△CHC’中,tan∠C’CH==