题目内容
【题目】如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.
【答案】见解析.
【解析】
延长BF,交DA的延长线于点M,连接BD,进而求证△AFM≌△EFB,得AM=BE,FB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一的性质即可求证BF⊥DF.
延长BF,交DA的延长线于点M,连接BD.
∵四边形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,FB=FM.
∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.
∵CE=AC,∴AC=CE= BD =DM.
∵FB=FM,∴BF⊥DF.
练习册系列答案
相关题目