题目内容
【题目】已知是等边三角形,D是BC边上的一个动点点D不与B,C重合是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.
如图1,求证:≌;
请判断图1中四边形BCEF的形状,并说明理由;
若D点在BC边的延长线上,如图2,其它条件不变,请问中结论还成立吗?如果成立,请说明理由.
【答案】(1)见解析;(2) 四边形BCEF是平行四边形,理由见解析;(3) 成立,理由见解析.
【解析】
(1)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB≌△ADC;
(2)四边形BCEF是平行四边形,因为△AFB≌△ADC,所以可得∠ABF=∠C=60°,进而证明∠ABF=∠BAC,则可得到FB∥AC,又BC∥EF,所以四边形BCEF是平行四边形;
(3)易证AF=AD,AB=AC,∠FAD=∠BAC=60°,可得∠FAB=∠DAC,即可证明△AFB≌△ADC;根据△AFB≌△ADC可得∠ABF=∠ADC,进而求得∠AFB=∠EAF,求得BF∥AE,又BC∥EF,从而证得四边形BCEF是平行四边形.
和都是等边三角形,
,,,
又,,
,
在和中,
,
≌;
由得≌,
,
又,
,
,
又,
四边形BCEF是平行四边形;
成立,理由如下:
和都是等边三角形,
,,,
又,,
,
在和中,
,
≌;
,
又,,
,
,
,
又,
四边形BCEF是平行四边形.
练习册系列答案
相关题目