题目内容
【题目】如图,一次函数y=x+b的图象与反比例函数y= (k为常数,k≠0)的图象交于点A(﹣1,4)和点B(a,1).
(1)求反比例函数的表达式和a、b的值;
(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.
【答案】
(1)
解:∵点A(﹣1,4)在反比例函数y= (k为常数,k≠0)的图象上,
∴k=﹣1×4=﹣4,
∴反比例函数解析式为y=﹣ .
把点A(﹣1,4)、B(a,1)分别代入y=x+b中,
得: ,解得:
(2)
解:连接AO,设线段AO与直线l相交于点M,如图所示.
∵A、O两点关于直线l对称,
∴点M为线段OA的中点,
∵点A(﹣1,4)、O(0,0),
∴点M的坐标为(﹣ ,2).
∴直线l与线段AO的交点坐标为(﹣ ,2)
【解析】(1)由点A的坐标结合反比例函数图象上点的坐标特征,即可求出k值,从而得出反比例函数解析式;再将点A、B坐标分别代入一次函数y=x+b中得出关于a、b的二元一次方程组,解方程组即可得出结论;
(2)连接AO,设线段AO与直线l相交于点M.由A、O两点关于直线l对称,可得出点M为线段AO的中点,再结合点A、O的坐标即可得出结论.本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式、解二元一次方程组以及中点坐标公式,解题的关键是:(1)由点的坐标利用待定系数法求函数系数;(2)得出点M为线段AO的中点.本题属于基础题,难度不大,解决该题型题目时,巧妙的利用了中点坐标公式降低了难度.
【考点精析】解答此题的关键在于理解解二元一次方程组的相关知识,掌握二元一次方程组:①代入消元法;②加减消元法,以及对确定一次函数的表达式的理解,了解确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法.