题目内容

【题目】某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3A型空调和2B型空调,需费用39000元;4A型空调比5B型空调的费用多6000元.

(1)求A型空调和B型空调每台各需多少元;

(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?

(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?

【答案】(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.

【解析】(1)根据题意可以列出相应的方程组,从而可以解答本题;

(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;

(3)根据题意和(2)中的结果,可以解答本题.

1)设A型空调和B型空调每台各需x元、y元,

,解得,

答:A型空调和B型空调每台各需9000元、6000元;

(2)设购买A型空调a台,则购买B型空调(30-a)台,

解得,10≤a≤12

a=10、11、12,共有三种采购方案,

方案一:采购A型空调10台,B型空调20台,

方案二:采购A型空调11台,B型空调19台,

方案三:采购A型空调12台,B型空调18台;

(3)设总费用为w元,

w=9000a+6000(30-a)=3000a+180000,

∴当a=10时,w取得最小值,此时w=210000,

即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网