题目内容
【题目】已知直线l:y=kx+4与抛物线y=x2交于点A(x1,y1),B(x2,y2).
(1)求:;的值.
(2)过点(0,-4)作直线PQ∥x轴,且过点A、B分别作AM⊥PQ于点M,BN⊥PQ于点N,设直线l:y=kx+4交y轴于点F.求证:AF=AM=4+y1.
(3)证明:+为定值,并求出该值.
【答案】(1),;(2)见解析;(3).
【解析】
(1)联立y=kx+4与y=x2,根据一元二次方程根与系数的关系即可求出、的值;
(2)作FC⊥AM于点C,可求F(0,4).设A(x1 x1),根据勾股定理及图形与坐标的关系可证结论成立;
(3)求出AF=, BF=,代入+化简即可.
∵y=kx+4,y=x2,
∴x2- kx-4=0,
∴,
;
∵y1=kx1+4,y2=kx2+4,
∴;
(2)作FC⊥AM于点C,
∵当x=0时,
y=0+4=4,
∴F(0,4).
设A(x1 x12),
∴AF=.
∵AM=,
∴AF=AM.
∵y1=x12,
∴AF=AM=4+y1;
(3)由(2)知,AF=,同理可求BF=.
∴+
=
=
= .
∵ y2+(-8-16k2)y+16=0,
∴,,
∴+=
= .
练习册系列答案
相关题目
【题目】某商店分两次购进、两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:
购进数量(件) | 购进所需费用 (元) | ||
A | B | ||
第一次 | 20 | 50 | 4100 |
第二次 | 30 | 40 | 3700 |
(1)求、两种商品每件的进价分别是多少元?
(2)商场决定商品以每件50元出售,商品以每件元出售.为满足市场需求,需购进、两种商品共件,且商品的数量不少于商品数量的倍,请你求出获利最大的进货方案,并确定最大利润.