题目内容
【题目】某游乐场部分平面图如图所示,C,E,A在同一直线上,D,E,B在同一直线上,测得A处与E处的距离为80 m,C处与D处的距离为34 m,∠C=90°,∠ABE=90°,∠BAE=30°.( ≈1.4, ≈1.7)
(1)求旋转木马E处到出口B处的距离;
(2)求海洋球D处到出口B处的距离(结果保留整数).
【答案】(1)旋转木马E处到出口B处的距离为40 m.(2)海洋球D处到出口B处的距离为80 m
【解析】试题分析:(1)在Rt△ABE中,利用直角三角形中30°的锐角所对的直角边等于斜边的一半即可直接求得BE的长;
(2)先求出∠D=30°,设CE=x,则DE=2x,在Rt△CDE中,利用勾股定理列方程求得CE的长,进而求得DE的长,然后利用DB=DE+EB求解.
试题解析:
解:(1)由题意可得,AE=80 m,∠BAE=30°,∠ABE=90°,
∴BE=AE=40 m,
即旋转木马E处到出口B处的距离为40 m;
(2∵∠BAE=30°,∠ABE=90°,
∴∠AEB=90°-∠BAE=60°,
∴∠AEB=∠CED=60°,
∴∠D=180°-∠C-∠CED=30°,
设CE=xm,则DE=2xm,
在Rt△CDE中,利用勾股定理得:
342+x2=(2x)2,
解得:x=,
∴DE=2x=≈40m.
∴DB=DE+BE=40+40=80 m,
即海洋球D处到出口B处的距离为80 m.
练习册系列答案
相关题目