题目内容
【题目】如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠BAC=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是( )
A. ②③ B. ②④ C. ②③④ D. ①③④
【答案】C
【解析】
OA不一定等于OD;由AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,根据角平分线的性质,可得DE=DF,继而证得AE=AF,则可得AD是EF的垂直平分线;判定AD⊥EF;又由当∠BAC=90°时,可得四边形AEDF矩形,继而证得四边形AEDF是正方形;由AE=AF,DE=DF,即可判定AE2+DF2=AF2+DE2.
∵AD是EF的垂直平分线,
∴OE=OF,OA不一定等于OD,故①错误;
∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,
∴DE=DF,
∵∠ADE=90°-∠DAE,∠ADF=90°-∠DAF,
∴∠ADE=∠ADF,
∴AE=AF,
∴点A在EF的垂直平分线上,点D在EF的垂直平分线上,
∴AD是EF的垂直平分线,
即AD⊥EF,故②正确;
∵∠AED=∠EFD=90°,
∴当∠A=90°时,四边形AEDF是矩形,
∵DE=DF,
∴四边形AEDF是正方形,故③正确;
∵AE=AF,DE=DF,
∴AE2+DF2=AF2+DE2,∴④正确,
所以正确的是:②③④,
故选C.
【题目】王师傅非常喜欢自驾游,为了解他新买的轿车的耗油情况,将油箱加满后进行了耗油实验,得到下表中的数据:
轿车行驶的路程 | ······ | |||||
油箱中的剩余油量 | ····· |
(1)在这个问题中,自变量是_ 因变量是_ ;
(2)该轿车油箱的容量为__ L,行驶时,估计油箱中的剩余油量为____;
(3)王师傅将油箱加满后,驾驶该轿车从地前往地,到达地时油箱中的剩余油量为,请估计两地之间的距离.