题目内容
【题目】四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.
(1)如图1,求证:矩形DEFG是正方形;
(2)若AB=2,CE=,求CG的长度;
(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.
【答案】(1)证明见解析;(2)CG= ;(3)∠EFC=120°或30°.
【解析】分析: (1)作EP⊥CD于P,EQ⊥BC于Q,证明Rt△EQF≌Rt△EPD,得到EF=ED,根据正方形的判定定理证明即可;
(2)通过计算发现E是AC中点,点F与C重合,△CDG是等腰直角三角形,由此即可解决问题.
(3)分两种情形考虑问题即可
详解:
(1)证明:作EP⊥CD于P,EQ⊥BC于Q,
∵∠DCA=∠BCA,
∴EQ=EP,
∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,
∴∠QEF=∠PED,
在Rt△EQF和Rt△EPD中,
,
∴Rt△EQF≌Rt△EPD,
∴EF=ED,
∴矩形DEFG是正方形;
(2)如图2中,在Rt△ABC中.AC=AB=2,
∵EC=,
∴AE=CE,
∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=.
(3)①当DE与AD的夹角为30°时,∠EFC=120°,
②当DE与DC的夹角为30°时,∠EFC=30°
综上所述,∠EFC=120°或30°.
点睛: 本题考查正方形的性质、矩形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.
【题目】2017年李明家买了一辆轿车,他连续记录了一周中每天行驶的路程(如下表),以50km为标准,多于50km的记“+”,不足50km的记“-”,刚好506m的记“0”.
周一 | 周二 | 周三 | 周四 | 周五 | 周六 | 周日 | |
路程(km) | -6 | 0 | -12 | 7 | -9 | +15 | +12 |
(1)请你求出李明家轿车一周中平均每天行驶多少千米?
(2)如果每行驶100km需要汽油8升,汽油价格6.85元/升,请计算李明家轿车一个月(按30天计算)的汽油费是多少元(精确到个位)?