题目内容
【题目】如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为______.
【答案】3
【解析】
由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径最短,如图,连接OE,OF,过O点作OH⊥EF,垂足为H,由Rt△ADB为等腰直角三角形,则AD=BD=1,即此时圆的直径为1,再根据圆周角定理可得到∠EOH=60°,则在Rt△EOH中,利用锐角三角函数可计算出EH=,然后根据垂径定理即可得到EF=2EH.
解:由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径最短,
如图,连接OE,OF,过O点作OH⊥EF,垂足为H,
在Rt△ADB中,∠ABC=45°,AB=2,
∴AD=BD=2,即此时圆的直径为2,
∵∠EOF=2∠BAC=120°,
而∠EOH=∠FOH,
∴∠EOH=60°,
在Rt△EOH中,EH=OEsin∠EOH=sin60°=,
∵OH⊥EF,
∴EH=FH,
∴EF=2EH=3,
即线段EF长度的最小值为3.
故答案为3.
【题目】阅读理解:如图,Rt△AB中,,AC=BC,AB= 4cm.动点D沿着A→C→B的方向从A点运动到B点.DEAB,垂足为E.设AE长为cm,BD长为cm(当D与A重 合时,= 4;当D与B重合时=0).小云根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小云的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了与的几组值,如下表:
/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
/cm | 4 | 3.5 | 3.2 |
| 2.8 | 2.1 | 1.4 | 0.7 | 0 |
补全上面表格,要求结果保留一位小数.则__________;
(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为 cm.