题目内容
【题目】如图,直线y=2x+2与y轴交于A点,与反比例函数(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.
(1)求k的值;
(2)点N(a,1)是反比例函数(x>0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】解:(1)由y=2x+2可知A(0,2),即OA=2。
∵tan∠AHO=2,∴OH=1。
∵MH⊥x轴,∴点M的横坐标为1。
∵点M在直线y=2x+2上,
∴点M的纵坐标为4.即M(1,4)。
∵点M在上,∴k=1×4=4。
(2)存在。
∵点N(a,1)在反比例函数(x>0)上,
∴a=4.即点N的坐标为(4,1)。
过点N作N关于x轴的对称点N1,连接MN1,交x轴于P(如图所示)。
此时PM+PN最小。
∵N与N1关于x轴的对称,N点坐标为(4,1),∴N1的坐标为(4,﹣1)。
设直线MN1的解析式为y=kx+b。
由解得。
∴直线MN1的解析式为。
令y=0,得x=.
∴P点坐标为(,0)。
【解析】(1)根据直线解析式求A点坐标,得OA的长度;根据三角函数定义可求OH的长度,得点M的横坐标;根据点M在直线上可求点M的坐标.从而可求K的值;
(2)根据反比例函数解析式可求N点坐标;作点N关于x轴的对称点N1,连接MN1与x轴的交点就是满足条件的P点位置:
根据轴对称的性质,线段中垂线的性质和三角形三边关系,对x轴上任一点P1,总有
P1M+P1N>MN1=PM+PN。
【题目】某课外小组的同学们在社会实践活动中调查了20户家庭莱月的用电量,如表所示:
用电量(千瓦时) | 120 | 140 | 160 | 180 | 200 |
户数 | 2 | 3 | 6 | 7 | 2 |
则这20户家庭该月用电量的众数和中位数、平均数分别是( )
A. 180,160,164B. 160,180;164
C. 160,160,164D. 180,180,164