题目内容
【题目】如图,,是直线与坐标轴的交点,直线过点,与轴交于点.
(1)求,,三点的坐标.
(2)当点是的中点时,在轴上找一点,使的和最小,画出点的位置,并求点的坐标.
(3)若点是折线上一动点,是否存在点,使为直角三角形,若存在,直接写出点的坐标;若不存在,请说明理由.
【答案】(1)A(-4,0),B(0,4),C(2,0);(2)画图见解析;E;(3)存在,点的坐标为或.
【解析】
(1)分别令x=0,y=0即可确定A、B的坐标,然后确定直线BC的解析式,然后再令y=0,即可求得C的坐标;
(2)先根据中点的性质求出D的坐标,然后再根据轴对称确定的坐标,然后确定DB1的解析式,令y=0,即可求得E的坐标;
(3)分别就D点在AB和D点BC上两种情况进行解答即可.
解:(1)在中,
令,得,
令,得,
,.
把代入,,
得
直线为:.
在中,
令,得,
点的坐标为;
(2)如图点为所求
点是的中点,,.
.
点关于轴的对称点的坐标为.
设直线的解析式为.
把,代入,
得.
解得,.
故该直线方程为:.
令,得点的坐标为.
(3)存在,点的坐标为或.
①当点在上时,由
得到:,
由等腰直角三角形求得点的坐标为;
②当点在上时,如图,设交轴于点.
在与中,
.
,
点的坐标为,
易得直线的解析式为,
与组成方程组,
解得.
交点的坐标为
练习册系列答案
相关题目