题目内容
【题目】如图,P为等腰△ABC内一点,AB=BC,∠BPC=108°,D为AC中点,BD与PC相交于点E,已知P为△ABE的内心.
(1)求证:∠PEB=60°;
(2)求∠PAC的度数.
【答案】(1)见解析 (2)48°
【解析】
(1)先由P为△ABE的内心,∠BPC=108°易知∠BAE=36°,再由△ABC为等腰三角形,D为AC中点,∠BPC=108°得到∠CBE=∠ABE=2∠PBE,且∠CBP=∠BCP=∠BAE=36°,即可得到∠CBE=24°,再利用∠PEB=∠BCE+∠CBE得证.
(2)易知∠AED=∠CED=∠BEP=60°,从而得到∠EAD=30,利用∠PAC=∠EAD+∠PAE即可得解.
(1)∵P为△ABE内心,
∴PB、PE、PA分别是∠ABE、∠AEB、∠BAE角平分线;
即:∠PBE+∠PEB+∠PAE=90°,
又∵∠BPC=108°,
∴∠PBE+∠PEB=72°,
∴∠PAE=18°,∠BAE=36°;
∵AB=BC且D是AC中点,
∴∠ABE=∠CBE;BD⊥AC,
又∵BE=BE,AB=CB;
∴△ABE≌△CBE;即∠BCE=∠BAE=36°;
又∵∠BPC=108°,
∴∠CBP=36°,
∵又∠CBE=∠ABE=2∠PBE;
设∠PBE=∠ABP=x,则∠CBE=2x, 由∠CBP=∠CBE+∠PBE=36°,有2x+x=36°,
∴x=12°,
所以∠CBE=2x=24°,所以∠PEB=∠BCE+∠CBE=36°+2×14°=60°;
(2)由(1)知△ABE≌△CBE;
∴∠BEC=∠BEA,
∴∠CED=∠AED=∠PEB=60°;
∴∠EAD=30°,
∴∠PAC=∠EAD+∠PAE =30°+18°=48°。
练习册系列答案
相关题目