题目内容
【题目】如图,在矩形中,,点是的中点,点在上,,点在线段上.若是以为顶角的等腰三角形且底角与相等,则____.
【答案】6或者
【解析】
分两种情况:①MN为等腰△PMN的底边时,作PF⊥MN于F,则∠PFM=∠PFN=90°,由矩形的性质得出AB=CD,BC=,∠A=∠C=90°,得出AB=CD=,BD=,证明△PDF∽△BDA,得出,求出PF=,证出CE=2CD,由等腰三角形的性质得出MF=NF,∠PNF=∠DEC,证出△PNF∽△DEC,得出,求出NF=2PF=3,即可得出答案;
②MN为等腰△PMN的腰时,作PF⊥BD于F,由①得:PF=,MF=3,设MN=PN=x,则FN=3-x,在Rt△PNF中,由勾股定理得出方程,解方程即可.
分两种情况:
①MN为等腰△PMN的底边时,作PF⊥MN于F,如图1所示:
则∠PFM=∠PFN=90°,
∵四边形ABCD是矩形,
∴AB=CD,BC=,∠A=∠C=90°,
∴AB=CD=,BD=
∵点P是AD的中点,
∴PD=
∵∠PDF=∠BDA,
∴△PDF∽△BDA,
∴ ,即 ,
解得:PF=,
∵CE=2BE,
∴BC=AD=3BE,
∴BE=CD,
∴CE=2CD,
∵△PMN是等腰三角形且底角与∠DEC相等,PF⊥MN,
∴MF=NF,∠PNF=∠DEC,
∵∠PFN=∠C=90°,
∴△PNF∽△DEC,
∴
∴MF=NF=2PF=3,
∴MN=2NF=6;
②MN为等腰△PMN的腰时,作PF⊥BD于F,如图2所示:
由①得:PF=,MF=3,
设MN=PN=x,则FN=3-x,
在Rt△PNF中,
解得:x=
,即MN=;
综上所述,MN的长为6或;
故答案为:6或.
练习册系列答案
相关题目