题目内容
【题目】已知二次函数的图象如图所示,给出以下结论: ①;②;③ ;④.其中正确结论的序号是( )
A.③④B.②④C.②③D.①②③
【答案】C
【解析】
由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解:①当x=1时,y=a+b+c>0,故①错误;
②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,
∴y=a﹣b+c<0,
故②正确;
③由抛物线的开口向下知a<0,
∵对称轴为0<x=﹣<1,
∴2a+b<0,
故③正确;
④对称轴为x=﹣>0,a<0
∴a、b异号,即b>0,
由图知抛物线与y轴交于正半轴,∴c>0
∴abc<0,
故④错误;
∴正确结论的序号为②③.
故选:C.
练习册系列答案
相关题目
【题目】(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:
成绩分组 | 频数 | 频率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x≤100 | b | c |
合计 | ■ | 1 |
(1)写出a,b,c的值;
(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;
(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.