题目内容
【题目】直线l:y=﹣x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图像指出当m的函数值大于0的函数值时x的取值范围.
【答案】x<3或x>8
【解析】
试题先根据函数的解析式求出A、B两点的坐标,再求出点C的坐标,利用待定系数法求出抛物线m的解析式,画出其图象,利用数形结合即可求解.
试题解析:∵y=﹣x+6交y轴于点A,与x轴交于点B,
∴x=0时,y=6,
∴A(0,6),
y=0时,x=8,
∴B(8,0),
∵过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),BC=5,
∴C(3,0).
设抛物线m的解析式为y=a(x﹣3)(x﹣8),
将A(0,6)代入,得24a=6,解得a=,
∴抛物线m的解析式为y=(x﹣3)(x﹣8),即y=x2﹣x+6;
函数图象如右:
当抛物线m的函数值大于0时,x的取值范围是x<3或x>8.
练习册系列答案
相关题目
【题目】如图,某项研究表明,大拇指与小拇指尽量张开时,两指尖的距离称为指距.如表是测得的指距与身高的一组数据:
指距d(cm) | 19 | 20 | 21 |
身高h(cm) | 151 | 160 | 169 |
(1)你能确定身高h与指距d之间的函数关系式吗?
(2)若某人的身高为196cm,一般情况下他的指距应是多少?