题目内容
【题目】如图,点A,B在反比例函数(x>0)的图象上,点C,D在反比例函数(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为( )
A. 3 B. 4 C. 2 D.
【答案】A
【解析】
先求出点A,B的坐标,再根据AC∥BD∥y轴,确定点C,点D的坐标,求出AC,BD,最后根据,△OAC与△ABD的面积之和为,即可解答.
解:∵点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,
∴点A的坐标为(1,1),点B的坐标为(2,),
∵AC∥BD∥y轴,
∴点C,D的横坐标分别为1,2,
∵点C,D在反比例函数y=(k>0)的图象上,
∴点C的坐标为(1,k),点D的坐标为(2,),
∴AC=k-1,BD==,
∴S△OAC=(k-1)×1=,S△ABD=×(2-1)=,
∵△OAC与△ABD的面积之和为,
∴+=,
解得:k=3.
故选:A.
练习册系列答案
相关题目