题目内容

【题目】如图,点A,B在反比例函数(x>0)的图象上,点C,D在反比例函数(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为(  )

A. 3 B. 4 C. 2 D.

【答案】A

【解析】

先求出点A,B的坐标,再根据AC∥BD∥y轴,确定点C,点D的坐标,求出AC,BD,最后根据,△OAC与△ABD的面积之和为,即可解答.

解:∵点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,

∴点A的坐标为(1,1),点B的坐标为(2,),

∵AC∥BD∥y轴,

∴点C,D的横坐标分别为1,2,

∵点C,D在反比例函数y=(k>0)的图象上,

∴点C的坐标为(1,k),点D的坐标为(2,),

∴AC=k-1,BD=

∴SOAC=(k-1)×1=,SABD=×(2-1)=

∵△OAC与△ABD的面积之和为

+

解得:k=3.

故选:A.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网