题目内容
【题目】已知在四边形中,,.
(1)如图1.连接,若,求证:.
(2)如图2,点分别在线段上,满足,求证:;
(3)若点在的延长线上,点在的延长线上,如图3所示,仍然满足,请写出与的数量关系,并给出证明过程.
【答案】(1)详见解析;(2)详见解析;(3)
【解析】
(1)根据已知条件得出为直角三角形,再根据证出,从而证出;
(2)如图2,延长DC到 K,使得CK=AP,连接BK,通过证△BPA≌△BCK(SAS)得到:∠1=∠2,BP=BK.然后根据证明得,从而得出,然后得出结论;
(3)如图3,在CD延长线上找一点K,使得KC=AP,连接BK,构建全等三角形:△BPA≌△BCK(SAS),由该全等三角形的性质和全等三角形的判定定理SSS证得:△PBQ≌△BKQ,则其对应角相等:∠PBQ=∠KBQ,结合四边形的内角和是360度可以推得:∠PBQ=90°+∠ADC.
(1)证明:如图1,
∵,
∴
在和中,
∴
∴
(2)如图2,
延长至点,使得,连接
∵
∴
∵
∴
∵,,
∴
∴,,
∵,,
∴
∵,,
∴
∴
∴
(3)
如图3,在延长线上找一点,使得,连接,
∵
∴
∵
∴
在和中,
∴
∴,
∴
∵
∴
在和中,
∴
∴
∴
∴
∴.
练习册系列答案
相关题目