题目内容
【题目】完成下面的证明:
已知:如图,∠AED=∠C,∠DEF=∠B.求证:∠1=∠2.
证明:∵∠AED=∠C(已知),
∴ ∥ ( ),
∴∠B+∠BDE=180°( ),
∵∠DEF=∠B(已知),
∴∠DEF+∠BDE=180°(等量代换),
∴ ∥ ( ),
∴ ∠1=∠2( ).
【答案】DE;BC;同位角相等,两直线平行;两直线平行,同旁内角互补;EF;AB;同旁内角互补,两直线平行;两直线平行,内错角相等.
【解析】
先判断出DE∥BC得出∠B+∠BDE=180°,再等量代换,即可判断出EF∥AB,最后利用平行线的性质可得出结果.
解:∵∠AED=∠C(已知),
∴DE∥BC(同位角相等,两直线平行),
∴∠B+∠BDE=180°(两直线平行,同旁内角互补),
∵∠DEF=∠B(已知),
∴∠DEF+∠BDE=180°(等量代换),
∴EF∥AB(同旁内角互补,两直线平行),
∴∠1=∠2(两直线平行,内错角相等).
故答案为:DE;BC;同位角相等,两直线平行;两直线平行,同旁内角互补;EF;AB;同旁内角互补,两直线平行;两直线平行,内错角相等.
练习册系列答案
相关题目