题目内容
【题目】已知A(1,5),B(3,-1)两点,在x轴上取一点M,使AM-BM取得最大值时,则M的坐标为 ▲
【答案】(,0).
【解析】
一次函数综合题,线段中垂线的性质,三角形三边关系,关于x轴对称的点的坐标,待定系数法,直线上点的坐标与方程的关系,解二元一次方程组.
此时AM-BM=AM-B′M=AB′.
不妨在x轴上任取一个另一点M′,连接M′A、M′B、M′B.
则M′A-M′B=M′A-M′B′<AB′(三角形两边之差小于第三边).
∴M′A-M′B<AM-BM,即此时AM-BM最大.
∵B′是B(3,-1)关于x轴的对称点,∴B′(3,1).
设直线AB′解析式为y=kx+b,把A(1,5)和B′(3,1)代入得:
,解得.∴直线AB′解析式为y=-2x+7.
令y=0,解得x=.∴M点坐标为(,0).
练习册系列答案
相关题目
【题目】某电器超市销售A B两种型号的电风扇,A型号每台进价为200元,B型号每台进价分别为150元,下表是近两天的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一天 | 3台 | 5台 | 1620元 |
第二天 | 4台 | 10台 | 2760元 |
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润不少于1060元的目标?若能,请给出相应的采购方案;若不能,请说明理由.