题目内容
【题目】一副含30°和45°角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是_____.现将三角板DEF绕点G按顺时针方向旋转(如图2),在∠CGF从0°到60°的变化过程中,点H相应移动的路径长共为_____.(结果保留根号)
【答案】(12﹣12)cm (12﹣18)cm
【解析】
如图1中,作于,设.在中,,,根据,可得,推出,推出.如图2中,当时,易证,此时的值最小,易知,当旋转角为时,与重合,易知,观察图象可知,在从到的变化过程中,点相应移动的路径长,由此即可解决问题.
解:如图1中,作HM⊥BC于M,设HM=a,则CM=HM=a.
在Rt△ABC中,∠ABC=30°,BC=12,
在Rt△BHM中,BH=2HM=2a,BM=a,
∵BM+FM=BC,
∴a+a=12,
∴a=6﹣6,
∴BH=2a=12﹣12.
如图2中,当DG⊥AB时,易证GH1⊥DF,此时BH1的值最小,易知BH1=BK+KH1=3+3,
∴HH1=BH﹣BH1=9﹣15,
当旋转角为60°时,F与H2重合,易知BH2=6,
观察图象可知,在∠CGF从0°到60°的变化过程中,点H相应移动的路径长=2HH1+HH2=18﹣30+[6﹣(12﹣12)]=12﹣18.
故答案为(12﹣12)cm,(12﹣18)cm.
练习册系列答案
相关题目