题目内容
【题目】如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.
(1)如图1,求证:AE=DF;
(2)如图2,若AB=2,过点M作MG⊥EF交线段BC于点G,判断△GEF的形状,并说明理由;
(3)如图3,若AB=,过点M作MG⊥EF交线段BC的延长线于点G.
①直接写出线段AE长度的取值范围;
②判断△GEF的形状,并说明理由.
【答案】(1)见解析;(2)见解析;(3)①<AE≤;②△GEF是等边三角形,见解析;
【解析】
(1)由条件可以得出AM=DM,∠A=∠ADF=90°,∠AME=∠DMF,可以证明△AEM≌△DFM,就可以得出结论.
(2)过点G作GH⊥AD于H,通过条件可以证明△AEM≌△HMG,得出ME=MG,进而得出∠EGM=45°,再由(1)的结论可以得出∠EGF=90°,从而得出结论.
(3)①当点G、C重合时利用三角形相似就可以求出AE的值,从而求出AE的取值范围.
②过点G作GH⊥AD交AD延长线于点H,证明△AEM∽△HMG,可以得出,从而求出tan∠MEG=,就可以求出∠MEG=60°,就可以得出结论.
解:(1)如图1,
证明:在矩形ABCD中,∠EAM=∠FDM=90°,∠AME=∠FMD.
∵AM=DM,
∴△AEM≌△DFM.
∴AE=DF.
(2)答:△GEF是等腰直角三角形.
证明:过点G作GH⊥AD于H,如图2,
∵∠A=∠B=∠AHG=90°,
∴四边形ABGH是矩形.
∴GH=AB=2.
∵MG⊥EF,
∴∠GME=90°.
∴∠AME+∠GMH=90°.
∵∠AME+∠AEM=90°,
∴∠AEM=∠GMH.
∴△AEM≌△HMG.
∴ME=MG.
∴∠EGM=45°.
由(1)得△AEM≌△DFM,
∴ME=MF.
∵MG⊥EF,
∴GE=GF.
∴∠EGF=2∠EGM=90°.
∴△GEF是等腰直角三角形.
(3)①当C、G重合时,如图3
,
∵四边形ABCD是矩形,
∴∠A=∠ADC=90°,
∴∠AME+∠AEM=90°.
∵MG⊥EF,
∴∠EMG=90°.
∴∠AME+∠DMC=90°,
∴∠AEM=∠DMC,
∴△AEM∽△DMC
∴,
∴,
∴AE=
∴<AE≤.
②△GEF是等边三角形.
证明:过点G作GH⊥AD交AD延长线于点H,如图4,
∵∠A=∠B=∠AHG=90°,
∴四边形ABGH是矩形.
∴GH=AB=2.
∵MG⊥EF,
∴∠GME=90°.
∴∠AME+∠GMH=90°.
∵∠AME+∠AEM=90°,
∴∠AEM=∠GMH.
又∵∠A=∠GHM=90°,
∴△AEM∽△HMG.
∴.
在Rt△GME中,
∴tan∠MEG==.
∴∠MEG=60°.
由(1)得△AEM≌△DFM.
∴ME=MF.
∵MG⊥EF,
∴GE=GF.
∴△GEF是等边三角形.
【题目】2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.
学生立定跳远测试成绩的频数分布表
分组 | 频数 |
a | |
12 | |
b | |
10 |
学生立定跳远测试成绩的频数分布直方图
请根据图表中所提供的信息,完成下列问题:
(1)表中________,________;
(2)样本成绩的中位数落在________范围内;
(3)请把频数分布直方图补充完整;
(4)该校共有1200名学生,估计该学校学生立定跳远成绩在范围内的有多少人?
【题目】为了防范新冠肺炎疫情,某校在网络平台开展防疫宣传,并出了6道选择题,对甲、乙两个班级学生(各有40名学生)的答题情况进行统计分析,得到统计表如下:
答对的题数 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
甲班 | 0 | 2 | 3 | 4 | 17 | 12 | 2 |
乙班 | 0 | 1 | 5 | 3 | 15 | 14 | 2 |
请根据以上信息,解答下列问题:
(1)甲班学生答对的题数的众数为 ;
(2)若答对的题数大于或等于5道的为优秀,则乙班该次考试的优秀率为 ;
(3)从甲、乙两班答题全对的学生中随机抽取2人做学习防疫知识心得交流,通过画树状图或列表法,求抽到的2人来自同一个班级的概率.