题目内容
【题目】如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm.现将四边形BCNM沿MN折叠,使点B,C分别落在点B',C'上.当点B'恰好落在边CD上时,线段BM的长为_____cm;在点M从点A运动到点B的过程中,若边MB'与边CD交于点E,则点E相应运动的路径长为_____cm.
【答案】
【解析】
第一个问题证明BM=MB′=NB′,求出NB即可解决问题.第二个问题,探究点E的运动轨迹,寻找特殊位置解决问题即可.
如图1中,
∵四边形ABCD是矩形,
∴AB∥CD,
∴∠1=∠3,
由翻折的性质可知:∠1=∠2,BM=MB′,
∴∠2=∠3,
∴MB′=NB′,
∵NB′===(cm),
∴BM=NB′=(cm).
如图2中,当点M与A重合时,AE=EN,设AE=EN=xcm,
在Rt△ADE中,则有x2=22+(4﹣x)2,解得x=,
∴DE=4﹣=(cm),
如图3中,当点M运动到MB′⊥AB时,DE′的值最大,DE′=5﹣1﹣2=2(cm),
如图4中,当点M运动到点B′落在CD时,DB′(即DE″)=5﹣1﹣=(4﹣)(cm),
∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=2﹣+2﹣(4﹣)=()(cm).
故答案为,().
练习册系列答案
相关题目