题目内容
【题目】如图,△ABC和△ECD均为等边三角形,B、C、D三点在一直线上,AD、BE相交于点F,DF=3,AF=4,则线段FE的长为 .
【答案】1
【解析】如图
可以认为△BCE是由△ACD逆时针转60°而得;那么CF的起始位是CF′,
∴CF=CF',
∵∠FCF'=60°,
∴△CFF′是等边△,
∴∠BFC=∠CFD=CF'F=60°,
∴CF平分∠DFB .
∵∠CAD+∠ACF=60°,∠ACF+∠FCE=60°,
∴△ACF∽△CEF ,
∴ = ,
∵△EFC∽△DF'C , EC=CD ,
∴EF=F'D
∴FD=FF'+F'D=CF+EF=3,
解得EF=1.
【考点精析】根据题目的已知条件,利用相似三角形的判定与性质的相关知识可以得到问题的答案,需要掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
练习册系列答案
相关题目