题目内容

【题目】如图,梯形ABCD中,ABDC , ∠B=90°,EBC上一点,且AEED . 若BC=12,DC=7,BEEC=1:2,

(1)AB
(2)AED的面

【答案】
(1)

解答:ABDC,且B=90°

∴∠AEB+BAE=90°C=90度.

∴∠AEB+CED=90度.

BAE=CED

∴△EAB∽△DEC

=

BEEC=12,且BC=12DC=7

=

AB=


(2)

解答:∵△EAB∽△DEC

即: =

解得:CD=7

SAED=S梯形ABCD-SABE-SECD= AB+CDBC- ABBE- ECCD=

+712- × ×4- ×8×7=


【解析】(1)由题意易知ABCD所在的两个三角形相似,再利用相似比即可求出所求线段的长度.(2)根据证得的△EAB∽△DEC利用相似三角形对应边的比成比例求得线段CD的长,利用梯形的面积减去两个三角形的面积即可求得三角形AED的面积.
【考点精析】掌握相似三角形的判定与性质是解答本题的根本,需要知道相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网