题目内容
【题目】如图,梯形ABCD中,AB∥DC , ∠B=90°,E为BC上一点,且AE⊥ED . 若BC=12,DC=7,BE:EC=1:2,
(1)求AB的长.
(2)求△AED的面积
【答案】
(1)
解答:∵AB∥DC,且∠B=90°,
∴∠AEB+∠BAE=90°及∠C=90度.
∴∠AEB+∠CED=90度.
故∠BAE=∠CED.
∴△EAB∽△DEC.
∴ =
又BE:EC=1:2,且BC=12及DC=7,
故 =
则AB=
(2)
解答:∵△EAB∽△DEC,
∴ =
即: =
解得:CD=7
∴S△AED=S梯形ABCD-S△ABE-S△ECD= (AB+CD)BC- ABBE- ECCD=
( +7)12- × ×4- ×8×7=
【解析】(1)由题意易知AB和CD所在的两个三角形相似,再利用相似比即可求出所求线段的长度.(2)根据证得的△EAB∽△DEC利用相似三角形对应边的比成比例求得线段CD的长,利用梯形的面积减去两个三角形的面积即可求得三角形AED的面积.
【考点精析】掌握相似三角形的判定与性质是解答本题的根本,需要知道相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
练习册系列答案
相关题目