题目内容
【题目】如图,正比例函数y=kx经过点A(2,4),AB⊥x轴于点B.
(1)求该正比例函数的解析式;
(2)将△ABO绕点A逆时针旋转90°得到△ADC,求点C的坐标;
(3)试判断点C是否在直线y= x+1的图象上,说明你的理由.
【答案】
(1)解:∵正比例函数y=kx经过点A(2,4),
∴2k=4,解得k=2,
∴该正比例函数的解析式为y=2x
(2)解:∵AB⊥x轴于点B,且A(2,4),
∴OB=2,AB=4.
∵将△ABO绕点A逆时针旋转90°得到△ADC,
∴AD=AB=4,DC=OB=2,
∴D点横坐标为6,C点纵坐标是2,
∴点C的坐标为(6,2)
(3)解:把点C的坐标(6,2)代入y= x+1,
得左边=2,右边= ×6+1=3,
左边≠右边,
即点C不在直线y= x+1的图象上
【解析】(1)将点A(2,4)代入y=kx,利用待定系数法即可求出该正比例函数的解析式;(2)先由AB⊥x轴于点B,且A(2,4),得出OB=2,AB=4.再根据旋转的性质得出AD=AB=4,DC=OB=2,即D点横坐标为6,C点纵坐标是2,进而求出点C的坐标;(3)把点C的坐标(6,2)代入y= x+1,即可判断.
练习册系列答案
相关题目