题目内容
【题目】如图,△ABC与△CDE都是等边三角形,B,C,D在一条直线上,连结B,E两点交AC于点M,连结A,D两点交CE于N点.
(1)AD与BE有什么数量关系,并证明你的结论.
(2)求证:CO平分∠BOD.
【答案】(1)证明见解析(2)证明见解析
【解析】
(1)根据等边三角形的性质得CA=CB,CD=CE,∠ACB=60°,∠DCE=60°,则∠ACE=60°,利用“SAS”可判断△ACD≌△BCE;
(2)作CH⊥BE于H,CQ⊥AD于Q.利用全等三角形的对应边上的高相等,可得CH=CQ,再根据角平分线的判定定理即可解决问题.
(1)∵△ABC和△CDE都是等边三角形,
∴CA=CB,CD=CE,∠ACB=60°,∠DCE=60°,
∴∠ACE=60°,
∴∠ACD=∠BCE=120°,
在△ACD和△BCE中,CA=CB,∠ACD=∠BCE,CD=CE
∴△ACD≌△BCE(SAS),
∴AD=BE;
(2)作CH⊥BE于H,CQ⊥AD于Q,
∵△ACD≌△BCE,
∴CQ=CH,
∵CH⊥BE于H,CQ⊥AD于Q,
∴CO平分∠BOD.
练习册系列答案
相关题目