题目内容

【题目】如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,ADCD于点D,EAB延长线上的一点,CE交⊙O于点F,连接OC,AC,若∠DAO=105°,E=30°.

(Ⅰ)求∠OCE的度数;

(Ⅱ)若⊙O的半径为2,求线段EF的长.

【答案】)45°;()2﹣2.

【解析】分析:

(1)由CD⊙O的切线可得OC⊥CD,结合AD⊥CD于点D可得OC∥AD,从而可得∠COE=∠DAE=105°,结合∠E=30°即可得到∠OCE=45°;

(2)如下图,过点OOM⊥CF于点M,则CM=MF结合∠OCE=45°,OC=即可得到OM=CM=2=MF,结合∠E=30°可得OE=2OM=4,则由勾股定理可得ME=从而可得EF=ME-MF=.

详解:

(Ⅰ)∵CD⊙O的切线,

∴OC⊥CD,又AD⊥CD,

∴AD∥OC,

∴∠COE=∠DAO=105°,

又∵∠E=30°,

∴∠OCE=180°﹣∠COE﹣∠E=45°;

(Ⅱ)如下图过点OOM⊥CEM,

∴ CM=MF,∠OMC=∠OME=90°,

∵∠OCE=45°,

∴OM=CM=2=MF,

∵∠E=30°,

Rt△OME,OE=2OM=4,

∴ME=

∴EF=ME-MF=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网