题目内容
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2-4ac>0;②2a+b<0;③4a-2b+c=0;④a∶b∶c=-1∶2∶3.其中正确的是( )
A. ①② B. ②③ C. ③④ D. ①④
【答案】D
【解析】试题解析:由二次函数图象与x轴有两个交点,
∴b2-4ac>0,选项①正确;
又对称轴为直线x=1,即-=1,
可得2a+b=0(i),选项②错误;
∵-2对应的函数值为负数,
∴当x=-2时,y=4a-2b+c<0,选项③错误;
∵-1对应的函数值为0,
∴当x=-1时,y=a-b+c=0(ii),
联立(i)(ii)可得:b=-2a,c=-3a,
∴a:b:c=a:(-2a):(-3a)=-1:2:3,选项④正确,
则正确的选项有:①④.
故选D.
练习册系列答案
相关题目
【题目】为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3 , 现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:
租金(单位:元/台时) | 挖掘土石方量(单位:m3/台时) | |
甲型挖掘机 | 100 | 60 |
乙型挖掘机 | 120 | 80 |
(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?
(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?