题目内容

【题目】已知非RtABC中,∠A=45°,高BDCE所在的直线交于点H,画出图形并求出∠BHC的度数.

【答案】135°45°

【解析】

试题分两种情况进行讨论:①△ABC是锐角三角形时,先根据高线的定义求出∠ADB=90°,∠BEC=90°,然后根据直角三角形两锐角互余求出ABD,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;②ABC是钝角三角形时,根据直角三角形两锐角互余求出BHC=∠A,从而得解.

试题解析:①如图1,△ABC是锐角三角形时,

∵BD、CE是△ABC的高线,

∴∠ADB=90°,∠BEC=90°,

在△ABD中,∵∠A=45°,

∴∠ABD=90°-45°=45°,

∴∠BHC=∠ABD+∠BEC=45°+90°=135°;

②△ABC是钝角三角形时,∵BD、CE是△ABC的高线,

∴∠A+∠ACE=90°,∠BHC+∠HCD=90°,

∵∠ACE=∠HCD(对顶角相等),

∴∠BHC=∠A=45°,

综上所述,∠BHC的度数是135°或45.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网