题目内容

【题目】课题学习:我们知道二次函数的图象是抛物线,它也可以这样定义:如果一个动点M(x,y)到定点A(0,m)(m>0)的距离与它到定直线y=﹣m的距离相等,那么动点M形成的图形就是抛物线y=ax2(a>0)的图象,如图所示.

(1)探究:当x≠0时,a与m有何数量关系?
(2)应用:已知动点M(x,y)到定点A(0,4)的距离与到定直线y=﹣4的距离相等,请写出动点M形成的抛物线的解析式.
(3)拓展:根据抛物线的平移变换,抛物线y= (x﹣1)2+2的图象可以看作到定点A()的距离与它到定直线y=的距离相等的动点M(x,y)所形成的图形.
(4)若点D的坐标是(1,8),在(2)中求得的抛物线上是否存在点P,使得PA+PD最短?若存在,求出点P的坐标,若不存在,请说明理由.

【答案】
(1)

解:由定义可知,MA=MB,

∴x2+(y﹣m)2=(y+m)2

∵y=ax2

∴x2=

=4my,

∴a=


(2)

解:由(1)可知,a=

∴抛物线的解析式为y= x2


(3)1;3;1
(4)

解:如图所示,过点D作直线y=﹣4的垂线垂足为M,与抛物线的交点就是的点P,此时PA+PD=PD+PM最短(垂线段最短),

此时点P坐标(1, ).


【解析】解:(3)∵抛物线顶点坐标(1,2),a=1,
∴抛物线y= (x﹣1)2+2的图象可以看作到定点A(1,3)的距离与它到定直线y=1的距离相等的动点M(x,y)所形成的图形.
所以答案是1,3,1.
【考点精析】关于本题考查的二次函数的图象,需要了解二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网